Article Search
검색
검색 팝업 닫기

Metrics

Help

  • 1. Aims and Scope

    Gut and Liver is an international journal of gastroenterology, focusing on the gastrointestinal tract, liver, biliary tree, pancreas, motility, and neurogastroenterology. Gut atnd Liver delivers up-to-date, authoritative papers on both clinical and research-based topics in gastroenterology. The Journal publishes original articles, case reports, brief communications, letters to the editor and invited review articles in the field of gastroenterology. The Journal is operated by internationally renowned editorial boards and designed to provide a global opportunity to promote academic developments in the field of gastroenterology and hepatology. +MORE

  • 2. Editorial Board

    Editor-in-Chief + MORE

    Editor-in-Chief
    Yong Chan Lee Professor of Medicine
    Director, Gastrointestinal Research Laboratory
    Veterans Affairs Medical Center, Univ. California San Francisco
    San Francisco, USA

    Deputy Editor

    Deputy Editor
    Jong Pil Im Seoul National University College of Medicine, Seoul, Korea
    Robert S. Bresalier University of Texas M. D. Anderson Cancer Center, Houston, USA
    Steven H. Itzkowitz Mount Sinai Medical Center, NY, USA
  • 3. Editorial Office
  • 4. Articles
  • 5. Instructions for Authors
  • 6. File Download (PDF version)
  • 7. Ethical Standards
  • 8. Peer Review

    All papers submitted to Gut and Liver are reviewed by the editorial team before being sent out for an external peer review to rule out papers that have low priority, insufficient originality, scientific flaws, or the absence of a message of importance to the readers of the Journal. A decision about these papers will usually be made within two or three weeks.
    The remaining articles are usually sent to two reviewers. It would be very helpful if you could suggest a selection of reviewers and include their contact details. We may not always use the reviewers you recommend, but suggesting reviewers will make our reviewer database much richer; in the end, everyone will benefit. We reserve the right to return manuscripts in which no reviewers are suggested.

    The final responsibility for the decision to accept or reject lies with the editors. In many cases, papers may be rejected despite favorable reviews because of editorial policy or a lack of space. The editor retains the right to determine publication priorities, the style of the paper, and to request, if necessary, that the material submitted be shortened for publication.

Search

Search

Year

to

Article Type

ahead

Split Viewer

Online first

CD40 Agonists Alter the Pancreatic Cancer Microenvironment by Shifting the Macrophage Phenotype toward M1 and Suppress Human Pancreatic Cancer in Organotypic Slice Cultures

Chae Yoon Lim1 , Jae Hyuck Chang2 , Won Sun Lee1 , Jeana Kim3 , and Il Young Park4

1Institute of Clinical Medicine Research, Departments of 2Internal Medicine, 3Hospital Pathology, and 4Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea

Correspondence to:Jae Hyuck Chang
ORCID https://orcid.org/0000-0003-1180-2693
E-mail wwjjaang@catholic.ac.kr

Received: July 6, 2021; Revised: August 24, 2021; Accepted: September 3, 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Gut Liver

Published online December 21, 2021

Copyright © Gut and Liver.

Abstract

Background/Aims: CD40 agonists are thought to generate antitumor effects on pancreatic cancer via macrophages and T cells. We aimed to investigate the role of CD40 agonists in the differentiation of macrophages and treatment of human pancreatic adenocarcinoma.
Methods: Immunohistochemistry was performed on paraffin-embedded surgical blocks from patients with pancreatic cancers to evaluate macrophage phenotypes and their relationship with survival. The effects of CD40 agonists on macrophage phenotypes and human pancreatic cancer were evaluated utilizing cell cocultures and organotypic slice cultures.
Results: CD163+ (predominant in M2 macrophages) and FOXP3+ (predominant in regulatory T cells) expression levels in the tumors were significantly lower in patients with stage IB pancreatic cancer than in those with stage II or III disease (p=0.002 and p=0.003, respectively). Patients with high CD163+ expression had shorter overall survival than those with low CD163+ expression (p=0.002). In vitro treatment of THP-1 macrophages with a CD40 agonist led to an increase in HLA-DR+ (predominant in M1 macrophages) and a decrease in CD163+ expression in THP-1 cells. Cell cocultures showed that CD40 agonists facilitate the suppression of PANC-1 human pancreatic cancer cells by THP-1 macrophages. Organotypic slice cultures showed that CD40 agonists alter the pancreatic cancer microenvironment by shifting the macrophage phenotype toward M1 (increase HLA-DR+ and decrease CD163+ expression), decreasing the abundance of regulatory T cells, and increasing tumor cell apoptosis.
Conclusions: CD163 is related to advanced human pancreatic cancer stages and shorter overall survival. CD40 agonists alter macrophage phenotype polarization to favor the M1 phenotype and suppress human pancreatic cancer.

Keywords: CD40 immunoglobulin, CD163 antigen, Macrophages, Pancreatic neoplasm, Tumor microenvironment


Article

ahead

Gut and Liver

Published online December 21, 2021

Copyright © Gut and Liver.

CD40 Agonists Alter the Pancreatic Cancer Microenvironment by Shifting the Macrophage Phenotype toward M1 and Suppress Human Pancreatic Cancer in Organotypic Slice Cultures

Chae Yoon Lim1 , Jae Hyuck Chang2 , Won Sun Lee1 , Jeana Kim3 , and Il Young Park4

1Institute of Clinical Medicine Research, Departments of 2Internal Medicine, 3Hospital Pathology, and 4Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea

Correspondence to:Jae Hyuck Chang
ORCID https://orcid.org/0000-0003-1180-2693
E-mail wwjjaang@catholic.ac.kr

Received: July 6, 2021; Revised: August 24, 2021; Accepted: September 3, 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background/Aims: CD40 agonists are thought to generate antitumor effects on pancreatic cancer via macrophages and T cells. We aimed to investigate the role of CD40 agonists in the differentiation of macrophages and treatment of human pancreatic adenocarcinoma.
Methods: Immunohistochemistry was performed on paraffin-embedded surgical blocks from patients with pancreatic cancers to evaluate macrophage phenotypes and their relationship with survival. The effects of CD40 agonists on macrophage phenotypes and human pancreatic cancer were evaluated utilizing cell cocultures and organotypic slice cultures.
Results: CD163+ (predominant in M2 macrophages) and FOXP3+ (predominant in regulatory T cells) expression levels in the tumors were significantly lower in patients with stage IB pancreatic cancer than in those with stage II or III disease (p=0.002 and p=0.003, respectively). Patients with high CD163+ expression had shorter overall survival than those with low CD163+ expression (p=0.002). In vitro treatment of THP-1 macrophages with a CD40 agonist led to an increase in HLA-DR+ (predominant in M1 macrophages) and a decrease in CD163+ expression in THP-1 cells. Cell cocultures showed that CD40 agonists facilitate the suppression of PANC-1 human pancreatic cancer cells by THP-1 macrophages. Organotypic slice cultures showed that CD40 agonists alter the pancreatic cancer microenvironment by shifting the macrophage phenotype toward M1 (increase HLA-DR+ and decrease CD163+ expression), decreasing the abundance of regulatory T cells, and increasing tumor cell apoptosis.
Conclusions: CD163 is related to advanced human pancreatic cancer stages and shorter overall survival. CD40 agonists alter macrophage phenotype polarization to favor the M1 phenotype and suppress human pancreatic cancer.

Keywords: CD40 immunoglobulin, CD163 antigen, Macrophages, Pancreatic neoplasm, Tumor microenvironment

Gut and Liver

Vol.16 No.1
January, 2022

pISSN 1976-2283
eISSN 2005-1212

qrcode
qrcode

Share this article on :

  • line

Popular Keywords

Gut and LiverQR code Download
qr-code

Editorial Office