GNL Gut and Liver
  1. Alexandra T. Greenhill, Bethany R. Edmunds. A primer of artificial intelligence in medicine. Techniques and Innovations in Gastrointestinal Endoscopy 2020;22:85
    https://doi.org/10.1016/j.tgie.2019.150642
  2. Lukas Buendgens, Didem Cifci, Narmin Ghaffari Laleh, Marko van Treeck, Maria T. Koenen, Henning W. Zimmermann, Till Herbold, Thomas Joachim Lux, Alexander Hann, Christian Trautwein, Jakob Nikolas Kather. Weakly supervised end-to-end artificial intelligence in gastrointestinal endoscopy. Sci Rep 2022;12
    https://doi.org/10.1038/s41598-022-08773-1
  3. Sharib Ali, Binod Bhattarai, Tae-Kyun Kim, Jens Rittscher. Machine Learning in Medical Imaging. 2022.
    https://doi.org/10.1007/978-3-030-59861-7_50
  4. Luisa F. Sánchez-Peralta, J. Blas Pagador, Artzai Picón, Ángel José Calderón, Francisco Polo, Nagore Andraka, Roberto Bilbao, Ben Glover, Cristina L. Saratxaga, Francisco M. Sánchez-Margallo. PICCOLO White-Light and Narrow-Band Imaging Colonoscopic Dataset: A Performance Comparative of Models and Datasets. Applied Sciences 2020;10:8501
    https://doi.org/10.3390/app10238501
  5. Xinxin Zhi, Junxiang Chen, Fangfang Xie, Jiayuan Sun, FelixJ. F. Herth. Diagnostic value of endobronchial ultrasound image features: A specialized review. Endosc Ultrasound 2021;10:3
    https://doi.org/10.4103/eus.eus_43_20
  6. Sana Syed, Ryan W Stidham. Potential for Standardization and Automation for Pathology and Endoscopy in Inflammatory Bowel Disease. 2020;26:1490
    https://doi.org/10.1093/ibd/izaa211
  7. Bruno Rosa, Reuma Margalit-Yehuda, Kelly Gatt, Martina Sciberras, Carlo Girelli, Jean-Christophe Saurin, Pablo Cortegoso Valdivia, Jose Cotter, Rami Eliakim, Flavio Caprioli, Gunnar Baatrup, Martin Keuchel, Pierre Ellul, Ervin Toth, Anastasios Koulaouzidis. Scoring systems in clinical small-bowel capsule endoscopy: all you need to know!. Endosc Int Open 2021;09:E802
    https://doi.org/10.1055/a-1372-4051
  8. . .
    https://doi.org/
  9. Yirupaiahgari KS Viswanath, Sagar Vaze, Richie Bird. Application of convolutional neural networks for computer-aided detection and diagnosis in gastrointestinal pathology: A simplified exposition for an endoscopist. WJG 2020;1:1
    https://doi.org/10.37126/aige.v1.i1.1
  10. Ulrik Stig Hansen, Eric Landau, Mehul Patel, BuʼHussain Hayee. Novel artificial intelligence-driven software significantly shortens the time required for annotation in computer vision projects. Endosc Int Open 2021;09:E621
    https://doi.org/10.1055/a-1341-0689
  11. Jeffrey S Mohlman, Samuel D Leventhal, Taft Hansen, Jessica Kohan, Valerio Pascucci, Mohamed E Salama. Improving Augmented Human Intelligence to Distinguish Burkitt Lymphoma From Diffuse Large B-Cell Lymphoma Cases. 2020;153:743
    https://doi.org/10.1093/ajcp/aqaa001
  12. Shintaro Oka, Kazunori Nozaki, Mikako Hayashi. An efficient annotation method for image recognition of dental instruments. Sci Rep 2023;13
    https://doi.org/10.1038/s41598-022-26372-y
  13. Shiv Bahadur, Prashant Kumar. Deep Learning for Targeted Treatments. 2023.
    https://doi.org/10.1002/9781119857983.ch8
  14. Weihao Weng, Mitsuyoshi Imaizumi, Shigeyuki Murono, Xin Zhu. Expert-level aspiration and penetration detection during flexible endoscopic evaluation of swallowing with artificial intelligence-assisted diagnosis. Sci Rep 2022;12
    https://doi.org/10.1038/s41598-022-25618-z
  15. Xiaoyong Yang, Qianxing Wei, Changhe Zhang, Kaibo Zhou, Li Kong, Weiwei Jiang. Colon Polyp Detection and Segmentation Based on Improved MRCNN. IEEE Trans. Instrum. Meas. 2021;70:1
    https://doi.org/10.1109/TIM.2020.3038011
  16. Shihori Tanabe, Edward J Perkins, Ryuichi Ono, Hiroki Sasaki. Artificial intelligence in gastrointestinal diseases. AIG 2021;2:69
    https://doi.org/10.35712/aig.v2.i3.69
  17. Sourav Halder, Jun Yamasaki, Shashank Acharya, Wenjun Kou, Guy Elisha, Dustin A. Carlson, Peter J. Kahrilas, John E. Pandolfino, Neelesh A. Patankar. Virtual disease landscape using mechanics-informed machine learning: Application to esophageal disorders. Artificial Intelligence in Medicine 2022;134:102435
    https://doi.org/10.1016/j.artmed.2022.102435
  18. Akihiro Fukuda, Tadashi Miyamoto, Shunsuke Kamba, Kazuki Sumiyama. Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data. 2022.
    https://doi.org/10.1007/978-3-030-33391-1_12
  19. Simona Attardo, Viveksandeep Thoguluva Chandrasekar, Marco Spadaccini, Roberta Maselli, Harsh K Patel, Madhav Desai, Antonio Capogreco, Matteo Badalamenti, Piera Alessia Galtieri, Gaia Pellegatta, Alessandro Fugazza, Silvia Carrara, Andrea Anderloni, Pietro Occhipinti, Cesare Hassan, Prateek Sharma, Alessandro Repici. Artificial intelligence technologies for the detection of colorectal lesions: The future is now. WJG 2020;26:5606
    https://doi.org/10.3748/wjg.v26.i37.5606
  20. Ioannis Tziortziotis, Faidon-Marios Laskaratos, Sergio Coda. Role of Artificial Intelligence in Video Capsule Endoscopy. Diagnostics 2021;11:1192
    https://doi.org/10.3390/diagnostics11071192
  21. Johanna von Gerichten, Marwan H. Elnesr, Joe E. Prollins, Ishanki A. De Mel, Alan Flanagan, Jonathan D. Johnston, Barbara A. Fielding, Michael Short. The [ 13 C ]octanoic acid breath test for gastric emptying quantification: A focus on nutrition and modeling . Lipids 2022;57:205
    https://doi.org/10.1002/lipd.12352
  22. Anna Pellat, Maxime Barat, Romain Coriat, Philippe Soyer, Anthony Dohan. Artificial intelligence: A review of current applications in hepatocellular carcinoma imaging. Diagnostic and Interventional Imaging 2023;104:24
    https://doi.org/10.1016/j.diii.2022.10.001
  23. Eyal Klang, Yiftach Barash, Reuma Yehuda Margalit, Shelly Soffer, Orit Shimon, Ahmad Albshesh, Shomron Ben-Horin, Marianne Michal Amitai, Rami Eliakim, Uri Kopylov. Deep learning algorithms for automated detection of Crohn’s disease ulcers by video capsule endoscopy. Gastrointestinal Endoscopy 2020;91:606
    https://doi.org/10.1016/j.gie.2019.11.012
  24. . .
    https://doi.org/
  25. Liangfu Li. Recognizing Polyps in Wireless Endoscopy Images Using Deep Stacked Auto Encoder With Constraint Image Model in Flexible Medical Sensor Platform. IEEE Access 2020;8:60653
    https://doi.org/10.1109/ACCESS.2020.2981765
  26. Mir Mohammed Assadullah. Barriers to Artificial Intelligence Adoption in Healthcare Management: A Systematic Review. SSRN Journal 2019
    https://doi.org/10.2139/ssrn.3530598
  27. Aldo Marzullo, Sara Moccia, Francesco Calimeri, Elena De Momi. Artificial Intelligence in Medicine. 2019.
    https://doi.org/10.1007/978-3-030-64573-1_164
  28. Jung Su Lee, Jihye Yun, Sungwon Ham, Hyunjung Park, Hyunsu Lee, Jeongseok Kim, Jeong-Sik Byeon, Hwoon-Yong Jung, Namkug Kim, Do Hoon Kim. Machine learning approach for differentiating cytomegalovirus esophagitis from herpes simplex virus esophagitis. Sci Rep 2021;11
    https://doi.org/10.1038/s41598-020-78556-z
  29. Jakob Nikolas Kather, Jeremias Krause, Tom Luedde. Künstliche Intelligenz in der Gastroenterologie. Dtsch Med Wochenschr 2020;145:1450
    https://doi.org/10.1055/a-1013-6593
  30. Yi-Fan Lu, Bin Lyu. Current situation and prospect of artificial intelligence application in endoscopic diagnosis ofHelicobacter pyloriinfection. AIGE 2021;2:50
    https://doi.org/10.37126/aige.v2.i3.50
  31. Zhang Xu, Yu Tao, Zheng Wenfang, Lin Ne, Huang Zhengxing, Liu Jiquan, Hu Weiling, Duan Huilong, Si Jianmin. Upper gastrointestinal anatomy detection with multi‐task convolutional neural networks. Healthcare Technology Letters 2019;6:176
    https://doi.org/10.1049/htl.2019.0066
  32. Luya Lian, Tianer Zhu, Fudong Zhu, Haihua Zhu. Deep Learning for Caries Detection and Classification. Diagnostics 2021;11:1672
    https://doi.org/10.3390/diagnostics11091672
  33. Eric Wise, Daniel Leslie, Stuart Amateau, Kyle Hocking, Adam Scott, Nirjhar Dutta, Sayeed Ikramuddin. Prediction of thirty-day morbidity and mortality after duodenal switch using an artificial neural network. Surg Endosc 2022
    https://doi.org/10.1007/s00464-022-09378-5
  34. Chia-Pei Tang, Tu-Liang Lin, Yu-Hsi Hsieh, Chen-Hung Hsieh, Chih-Wei Tseng, Felix W. Leung. Polyp detection and false-positive rates by computer-aided analysis of withdrawal-phase videos of colonoscopy of the right-sided colon segment in a randomized controlled trial comparing water exchange and air insufflation. Gastrointestinal Endoscopy 2022;95:1198
    https://doi.org/10.1016/j.gie.2021.12.020
  35. Motoi Miura, Tetsuya Tanimoto. Correspondence on a published article in Journal of Cancer Policy. Journal of Cancer Policy 2021;29:100295
    https://doi.org/10.1016/j.jcpo.2021.100295
  36. Jia Wu, Jiamin Chen, Jianting Cai. Application of Artificial Intelligence in Gastrointestinal Endoscopy. 2021;55:110
    https://doi.org/10.1097/MCG.0000000000001423
  37. Mayank Golhar, Taylor L. Bobrow, Mirmilad Pourmousavi Khoshknab, Simran Jit, Saowanee Ngamruengphong, Nicholas J. Durr. Improving Colonoscopy Lesion Classification Using Semi-Supervised Deep Learning. IEEE Access 2021;9:631
    https://doi.org/10.1109/ACCESS.2020.3047544
  38. Wanderson Gonçalves e Gonçalves, Marcelo Henrique de Paula dos Santos, Fábio Manoel França Lobato, Ândrea Ribeiro-dos-Santos, Gilderlanio Santana de Araújo. Deep learning in gastric tissue diseases: a systematic review. BMJ Open Gastroenterol 2020;7:e000371
    https://doi.org/10.1136/bmjgast-2019-000371
  39. Xinxin Zhi, Jin Li, Junxiang Chen, Lei Wang, Fangfang Xie, Wenrui Dai, Jiayuan Sun, Hongkai Xiong. Automatic Image Selection Model Based on Machine Learning for Endobronchial Ultrasound Strain Elastography Videos. Front. Oncol. 2021;11
    https://doi.org/10.3389/fonc.2021.673775
  40. Imran Iqbal, Khuram Walayat, Mohib Ullah Kakar, Jinwen Ma. Automated identification of human gastrointestinal tract abnormalities based on deep convolutional neural network with endoscopic images. Intelligent Systems with Applications 2022;16:200149
    https://doi.org/10.1016/j.iswa.2022.200149
  41. Murtaza Ashraf, Willmer Rafell Quiñones Robles, Mujin Kim, Young Sin Ko, Mun Yong Yi. A loss-based patch label denoising method for improving whole-slide image analysis using a convolutional neural network. Sci Rep 2022;12
    https://doi.org/10.1038/s41598-022-05001-8
  42. Li Huang, Jun Liu, Lianlian Wu, Ming Xu, Liwen Yao, Lihui Zhang, Renduo Shang, Mengjiao Zhang, Qiutang Xiong, Dawei Wang, Zehua Dong, Youming Xu, Jia Li, Yijie Zhu, Dexin Gong, Huiling Wu, Honggang Yu. Impact of Computer-Assisted System on the Learning Curve and Quality in Esophagogastroduodenoscopy: Randomized Controlled Trial. Front. Med. 2021;8
    https://doi.org/10.3389/fmed.2021.781256
  43. Shouyuan Wu, Jianjian Wang, Qiangqiang Guo, Hui Lan, Juanjuan Zhang, Ling Wang, Estill Janne, Xufei Luo, Qi Wang, Yang Song, Joseph L. Mathew, Yangqin Xun, Nan Yang, Myeong Soo Lee, Yaolong Chen. Application of artificial intelligence in clinical diagnosis and treatment: an overview of systematic reviews. Intelligent Medicine 2022;2:88
    https://doi.org/10.1016/j.imed.2021.12.001
  44. Akihiko Oka, Norihisa Ishimura, Shunji Ishihara. A New Dawn for the Use of Artificial Intelligence in Gastroenterology, Hepatology and Pancreatology. Diagnostics 2021;11:1719
    https://doi.org/10.3390/diagnostics11091719
  45. Lin Xu, Blair Walker, Peir-In Liang, Yi Tong, Cheng Xu, Yu Chun Su, Aly Karsan. Colorectal Cancer Detection Based on Deep Learning. Journal of Pathology Informatics 2020;11:28
    https://doi.org/10.4103/jpi.jpi_68_19
  46. Julia Gong, F. Christopher Holsinger, Julia E. Noel, Sohei Mitani, Jeff Jopling, Nikita Bedi, Yoon Woo Koh, Lisa A. Orloff, Claudio R. Cernea, Serena Yeung. Using deep learning to identify the recurrent laryngeal nerve during thyroidectomy. Sci Rep 2021;11
    https://doi.org/10.1038/s41598-021-93202-y
  47. Huangming Zhuang, Jixiang Zhang, Fei Liao. A systematic review on application of deep learning in digestive system image processing. Vis Comput 2021
    https://doi.org/10.1007/s00371-021-02322-z
  48. Diego Marin-Santos, Juan A. Contreras-Fernandez, Isaac Perez-Borrero, Hector Pallares-Manrique, Manuel E. Gegundez-Arias. Automatic detection of crohn disease in wireless capsule endoscopic images using a deep convolutional neural network. Appl Intell 2022
    https://doi.org/10.1007/s10489-022-04146-3
  49. Alba Nogueira-Rodríguez, Hugo López-Fernández, Daniel Glez-Peña. Distributed Computing and Artificial Intelligence, 16th International Conference, Special Sessions. 2022.
    https://doi.org/10.1007/978-3-030-23946-6_27
  50. Aashutosh Ganesh, Koshy George. Generative Adversarial Networks for Image-to-Image Translation. 2022.
    https://doi.org/10.1016/B978-0-12-823519-5.00010-5
  51. Yu-Hang Zhang, Lin-Jie Guo, Xiang-Lei Yuan, Bing Hu. Artificial intelligence-assisted esophageal cancer management: Now and future. WJG 2020;26:5256
    https://doi.org/10.3748/wjg.v26.i35.5256
  52. Huangming Zhuang, Anyu Bao, Yulin Tan, Hanyu Wang, Qingfang Xie, Meiqi Qiu, Wanli Xiong, Fei Liao. Application and prospect of artificial intelligence in digestive endoscopy. Expert Review of Gastroenterology & Hepatology 2022;16:21
    https://doi.org/10.1080/17474124.2022.2020646
  53. Byung Soo Yoo, Kevin V Houston, Steve M D'Souza, Alsiddig Elmahdi, Isaac Davis, Ana Vilela, Parth J Parekh, David A Johnson. Advances and horizons for artificial intelligence of endoscopic screening and surveillance of gastric and esophageal disease. AIMI 2022;3:70
    https://doi.org/10.35711/aimi.v3.i3.70
  54. Francis Jesmar P. Montalbo. Fusing compressed deep ConvNets with a self-normalizing residual block and alpha dropout for a cost-efficient classification and diagnosis of gastrointestinal tract diseases. MethodsX 2022;9:101925
    https://doi.org/10.1016/j.mex.2022.101925
  55. Aldo Marzullo, Sara Moccia, Francesco Calimeri, Elena De Momi. Artificial Intelligence in Medicine. 2022.
    https://doi.org/10.1007/978-3-030-58080-3_164-1
  56. Slawomir Wozniak, Aleksander Pawlus, Joanna Grzelak, Slawomir Chobotow, Friedrich Paulsen, Cyprian Olchowy, Urszula Zaleska-Dorobisz. Acute colonic flexures: the basis for developing an artificial intelligence-based tool for predicting the course of colonoscopy. Anat Sci Int 2023;98:136
    https://doi.org/10.1007/s12565-022-00681-8
  57. Simona-Ruxandra Volovat, Iolanda Augustin, Daniela Zob, Diana Boboc, Florin Amurariti, Constantin Volovat, Cipriana Stefanescu, Cati Raluca Stolniceanu, Manuela Ciocoiu, Eduard Alexandru Dumitras, Mihai Danciu, Delia Gabriela Ciobanu Apostol, Vasile Drug, Sinziana Al Shurbaji, Lucia-Georgiana Coca, Florin Leon, Adrian Iftene, Paul-Corneliu Herghelegiu. Use of Personalized Biomarkers in Metastatic Colorectal Cancer and the Impact of AI. Cancers 2022;14:4834
    https://doi.org/10.3390/cancers14194834
  58. Yuexin Cai, Jin-Gang Yu, Yuebo Chen, Chu Liu, Lichao Xiao, Emad M Grais, Fei Zhao, Liping Lan, Shengxin Zeng, Junbo Zeng, Minjian Wu, Yuejia Su, Yuanqing Li, Yiqing Zheng. Investigating the use of a two-stage attention-aware convolutional neural network for the automated diagnosis of otitis media from tympanic membrane images: a prediction model development and validation study. BMJ Open 2021;11:e041139
    https://doi.org/10.1136/bmjopen-2020-041139
  59. H.- D. Allescher, M. Mangold, V. Weingart. Künstliche Intelligenz in der Endoskopie – neue Wege zur Polypendetektion und Charakterisierung. Gastroenterologe 2021;16:3
    https://doi.org/10.1007/s11377-020-00495-y
  60. Michihiro Kudou, Toshiyuki Kosuga, Eigo Otsuji. Artificial intelligence in gastrointestinal cancer: Recent advances and future perspectives. AIG 2020;1:71
    https://doi.org/10.35712/aig.v1.i4.71
  61. Yu Huan, Gastone Ciuti. Endorobotics. 2020.
    https://doi.org/10.1016/B978-0-12-821750-4.00003-7
  62. S. Mizuno, K. Okabayashi, A. Ikebata, S. Matsui, R. Seishima, K. Shigeta, Y. Kitagawa. Prediction of pouchitis after ileal pouch–anal anastomosis in patients with ulcerative colitis using artificial intelligence and deep learning. Tech Coloproctol 2022;26:471
    https://doi.org/10.1007/s10151-022-02602-3
  63. Yuxue Zhao, Bo Hu, Ying Wang, Xiaomeng Yin, Yuanyuan Jiang, Xiuli Zhu. Identification of gastric cancer with convolutional neural networks: a systematic review. Multimed Tools Appl 2022;81:11717
    https://doi.org/10.1007/s11042-022-12258-8
  64. Farah Younas, Muhammad Usman, Wei Qi Yan. An ensemble framework of deep neural networks for colorectal polyp classification. Multimed Tools Appl 2022
    https://doi.org/10.1007/s11042-022-14177-0
  65. MajidA Almadi, KhekYu Ho. Artificial inelegance in endoscopy: An updated auricle of Delphi!. Saudi J Gastroenterol 2020;26:1
    https://doi.org/10.4103/sjg.SJG_636_19
  66. Jing Qi, Guangcong Ruan, Jia Liu, Yi Yang, Qian Cao, Yanling Wei, Yongjian Nian. PHF3 Technique: A Pyramid Hybrid Feature Fusion Framework for Severity Classification of Ulcerative Colitis Using Endoscopic Images. Bioengineering 2022;9:632
    https://doi.org/10.3390/bioengineering9110632
  67. Mai Tharwat, Nehal A. Sakr, Shaker El-Sappagh, Hassan Soliman, Kyung-Sup Kwak, Mohammed Elmogy. Colon Cancer Diagnosis Based on Machine Learning and Deep Learning: Modalities and Analysis Techniques. Sensors 2022;22:9250
    https://doi.org/10.3390/s22239250
  68. Zishang Kong, Min He, Qianjiang Luo, Xiansong Huang, Pengxu Wei, Yalu Cheng, Luyang Chen, Yongsheng Liang, Yanchang Lu, Xi Li, Jie Chen. Multi-Task Classification and Segmentation for Explicable Capsule Endoscopy Diagnostics. Front. Mol. Biosci. 2021;8
    https://doi.org/10.3389/fmolb.2021.614277
  69. Maryam Tahvildari, Rohan Bir Singh, Hajirah N. Saeed. Application of Artificial Intelligence in the Diagnosis and Management of Corneal Diseases. Seminars in Ophthalmology 2021;36:641
    https://doi.org/10.1080/08820538.2021.1893763
  70. Ming Xu, Wei Zhou, Lianlian Wu, Jun Zhang, Jing Wang, Ganggang Mu, Xu Huang, Yanxia Li, Jingping Yuan, Zhi Zeng, Yonggui Wang, Li Huang, Jun Liu, Honggang Yu. Artificial intelligence in the diagnosis of gastric precancerous conditions by image-enhanced endoscopy: a multicenter, diagnostic study (with video). Gastrointestinal Endoscopy 2021;94:540
    https://doi.org/10.1016/j.gie.2021.03.013
  71. Gorkem Polat, Haluk Tarik Kani, Ilkay Ergenc, Yesim Ozen Alahdab, Alptekin Temizel, Ozlen Atug. Improving the Computer-Aided Estimation of Ulcerative Colitis Severity According to Mayo Endoscopic Score by Using Regression-Based Deep Learning. 2022
    https://doi.org/10.1093/ibd/izac226
  72. Yihong Deng, Yuan Chen, Lihua Xie, Liansheng Wang, Juan Zhan. The investigation of construction and clinical application of image recognition technology assisted bronchoscopy diagnostic model of lung cancer. Front. Oncol. 2022;12
    https://doi.org/10.3389/fonc.2022.1001840
  73. Alba Nogueira-Rodríguez, Rubén Domínguez-Carbajales, Hugo López-Fernández, Águeda Iglesias, Joaquín Cubiella, Florentino Fdez-Riverola, Miguel Reboiro-Jato, Daniel Glez-Peña. Deep Neural Networks approaches for detecting and classifying colorectal polyps. Neurocomputing 2021;423:721
    https://doi.org/10.1016/j.neucom.2020.02.123
  74. Gastone Ciuti, Karolina Skonieczna-Żydecka, Wojciech Marlicz, Veronica Iacovacci, Hongbin Liu, Danail Stoyanov, Alberto Arezzo, Marcello Chiurazzi, Ervin Toth, Henrik Thorlacius, Paolo Dario, Anastasios Koulaouzidis. Frontiers of Robotic Colonoscopy: A Comprehensive Review of Robotic Colonoscopes and Technologies. JCM 2020;9:1648
    https://doi.org/10.3390/jcm9061648
  75. Kwang-Sig Lee, Sang-Hyuk Son, Sang-Hyun Park, Eun Sun Kim. Automated detection of colorectal tumors based on artificial intelligence. BMC Med Inform Decis Mak 2021;21
    https://doi.org/10.1186/s12911-020-01314-8
  76. Byung Soo Yoo, Steve M D'Souza, Kevin Houston, Ankit Patel, James Lau, Alsiddig Elmahdi, Parth J Parekh, David Johnson. Artificial intelligence and colonoscopy − enhancements and improvements. AIGE 2021;2:157
    https://doi.org/10.37126/aige.v2.i4.157
  77. Zhen Deng, Peijie Jiang, Yuxin Guo, Shengzhan Zhang, Ying Hu, Xiaochun Zheng, Bingwei He. Safety-aware robotic steering of a flexible endoscope for nasotracheal intubation. Biomedical Signal Processing and Control 2023;82:104504
    https://doi.org/10.1016/j.bspc.2022.104504
  78. Shiva Rangwani, Devarshi R. Ardeshna, Brandon Rodgers, Jared Melnychuk, Ronald Turner, Stacey Culp, Wei-Lun Chao, Somashekar G. Krishna. Application of Artificial Intelligence in the Management of Pancreatic Cystic Lesions. Biomimetics 2022;7:79
    https://doi.org/10.3390/biomimetics7020079
  79. Naoki Hosoe, Kenji J. L. Limpias Kamiya, Yukie Hayashi, Tomohisa Sujino, Haruhiko Ogata, Takanori Kanai. Current status of colon capsule endoscopy. Digestive Endoscopy 2021;33:529
    https://doi.org/10.1111/den.13769
  80. Feng Liang, Shu Wang, Kai Zhang, Tong-Jun Liu, Jian-Nan Li. Development of artificial intelligence technology in diagnosis, treatment, and prognosis of colorectal cancer. WJGO 2022;14:124
    https://doi.org/10.4251/wjgo.v14.i1.124
  81. Erik Meijering. A bird’s-eye view of deep learning in bioimage analysis. Computational and Structural Biotechnology Journal 2020;18:2312
    https://doi.org/10.1016/j.csbj.2020.08.003
  82. Peng Zan, Hua Zhong, Yutong Zhao, Huiyan Xu, Rui Hong, Qiao Ding, Jingwei Yue. Research on improved intestinal image classification for LARS based on ResNet. Review of Scientific Instruments 2022;93:124101
    https://doi.org/10.1063/5.0100192
  83. Linjie Guo, Hui Gong, Qiushi Wang, Qiongying Zhang, Huan Tong, Jing Li, Xiang Lei, Xue Xiao, Chuanhui Li, Jinsun Jiang, Bing Hu, Jie Song, Chengwei Tang, Zhiyin Huang. Detection of multiple lesions of gastrointestinal tract for endoscopy using artificial intelligence model: a pilot study. Surg Endosc 2021;35:6532
    https://doi.org/10.1007/s00464-020-08150-x
  84. Daljeet Chahal, Michael F. Byrne. A primer on artificial intelligence and its application to endoscopy. Gastrointestinal Endoscopy 2020;92:813
    https://doi.org/10.1016/j.gie.2020.04.074
  85. Muhammad Adeel Azam, Claudio Sampieri, Alessandro Ioppi, Stefano Africano, Alberto Vallin, Davide Mocellin, Marco Fragale, Luca Guastini, Sara Moccia, Cesare Piazza, Leonardo S. Mattos, Giorgio Peretti. Deep Learning Applied to White Light and Narrow Band Imaging Videolaryngoscopy: Toward Real‐Time Laryngeal Cancer Detection. The Laryngoscope 2022;132:1798
    https://doi.org/10.1002/lary.29960
© 2023. Gut and Liver. / Powered by INFOrang Co., Ltd