Gut and Liver 2008; 2(2): 74-80 https://doi.org/10.5009/gnl.2008.2.2.74 Cerulein Pancreatitis: Oxidative Stress, Inflammation, and Apoptosis
Author Information
Hyeyoung Kim*
*Department of Food and Nutrition, Brain Korea 21 Project, College of Human Ecology and Department of Pharmacology, College of Medicine, Yonsei University, Seoul, Korea

Hyeyoung Kim
© The Korean Society of Gastroenterology, the Korean Society of Gastrointestinal Endoscopy, the Korean Society of Neurogastroenterology and Motility, Korean College of Helicobacter and Upper Gastrointestinal Research, Korean Association the Study of Intestinal Diseases, the Korean Association for the Study of the Liver, Korean Pancreatobiliary Association, and Korean Society of Gastrointestinal Cancer. All rights reserved.

Abstract
Cerulein pancreatitis is similar to human edematous pancreatitis, manifesting with dysregulation of digestive enzyme production and cytoplasmic vacuolization, the death of acinar cells, edema formation, and infiltration of inflammatory cells into the pancreas. Reactive oxygen species are involved in nuclear factor-ՊB activation, cytokine expression, apoptosis and pathogenesis of pancreatitis. There is recent evidence that cerulein activates NADPH oxidase, which is a major source of reactive oxygen species during inflammation and apoptosis in pancreatic acinar cells. In addition, the Janus kinase/signal transducer and activator of transcription pathway has been suggested as being involved in inflammatory signaling in the pancreas. This review discusses the involvement of oxidative stress in inflammation and apoptosis in pancreatic acinar cells stimulated with cerulein as an in vitro model of pancreatitis. (Gut and Liver 2008;2:74-80)
Keywords: Cerulein; Pancreatitis; Inflammation; Apoptosis
Abstract
Cerulein pancreatitis is similar to human edematous pancreatitis, manifesting with dysregulation of digestive enzyme production and cytoplasmic vacuolization, the death of acinar cells, edema formation, and infiltration of inflammatory cells into the pancreas. Reactive oxygen species are involved in nuclear factor-ՊB activation, cytokine expression, apoptosis and pathogenesis of pancreatitis. There is recent evidence that cerulein activates NADPH oxidase, which is a major source of reactive oxygen species during inflammation and apoptosis in pancreatic acinar cells. In addition, the Janus kinase/signal transducer and activator of transcription pathway has been suggested as being involved in inflammatory signaling in the pancreas. This review discusses the involvement of oxidative stress in inflammation and apoptosis in pancreatic acinar cells stimulated with cerulein as an in vitro model of pancreatitis. (Gut and Liver 2008;2:74-80)
Keywords: Cerulein; Pancreatitis; Inflammation; Apoptosis
Search for
Services
Archives